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Abstract
We have studied the complete phonon dispersion, electron–phonon and
superconducting properties of the Nb1−x Mox alloy within the framework of
density functional perturbation theory using a mixed-basis pseudopotential
method and the self-consistent virtual-crystal approximation. Complete
phonon dispersions as a function of x were obtained in good agreement with
experimental data, independent of the approximation used for the exchange–
correlation functional. For the Eliashberg function α2 F(ω) we found a shift of
weight to higher frequencies as well as an overall reduction with increasing x
up to x ≈ 0.7; however, for x = 1 (pure Mo) the spectral weight for α2 F(ω)

increased again. We used the information of α2 F(ω) to calculate and analyze
the evolution of the average coupling strength λ(x) and the superconducting
temperature Tc(x). The variation of λ(x) closely follows the variation of
the electronic density of states at EF. For Tc(x) experimental values were
well reproduced provided a proper interpolation scheme for the Coulomb
pseudopotential μ∗(x) was employed.

1. Introduction

The Nb1−x Mox alloy has been investigated extensively in the past because of its
superconducting properties. In particular, the observation of the non-monotonic behavior of
the superconducting critical temperature (Tc) as a function of Mo-content, x , has initiated
numerous experimental and theoretical studies of its structural [1–5], electronic [6–12],
vibrational [13–21], and superconducting properties [21–31]. While Nb possesses the highest
Tc among elemental metals (9.25 K), Tc decreases with increasing Mo-content, falling below
0.5 K for 0.4 � x � 0.9 and slightly recovering again to Tc = 0.92 K at x = 1 (Mo) [1, 22, 32].
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The aim of this paper is to investigate the superconducting properties of this alloy system with
modern ab initio density functional methods. This requires good knowledge of the electronic
properties, a detailed microscopic description of the phonon dispersion as well as an accurate
calculation of the electron–phonon coupling. Due to the presence of phonon anomalies in Nb
and Mo as well as in the alloy system this is a non-trivial task.

Measurements of the phonon dispersions revealed a wealth of phonon anomalies which
strongly depend on the value of x [13–15]. For example, on the one hand, Nb exhibits a
Kohn anomaly in the longitudinal branch [00ζ ], which is not present in Mo. On the other
hand, in Mo there is a depression near the symmetry point H for the longitudinal and transverse
branches [13–15]. The evolution of this anomaly in Nb1−x Mox was studied [15] using coherent
one-phonon scattering of thermal neutrons and it was found that at x ≈ 0.4 the anomaly starts
to disappear, but for higher Mo concentrations (x � 0.9), a depression at the H-point appears
suddenly. Another example is given by the transverse-mode frequencies at the N-point, where
a reversal of the ordering is observed from Nb to Mo [15].

From the theoretical point of view non-stoichiometric systems add additional
complications. To overcome these, different attempts have been made in the past to
simulate the alloy by using quasirandom structures [4], the coherent potential approximation
(CPA) [9–11], and the Korringa–Kohn–Rostoker coherent potential approximation (KKR-
CPA) [12]. However, such studies have been limited to a few Mo concentrations, because
these calculations are computationally very demanding, especially if one is interested in very
low (close to Nb) or high concentrations (close to Mo). Tc was calculated only in a fairly
global way by expressing the electron–phonon coupling λ as a function of x in terms of the
Hopfield parameter (η) [12]. Combined with the Debye temperature and assumptions about the
Coulomb pseudopotential μ∗, the general trend of Tc(x) was reproduced with the McMillan
formula [33]. Reliable quantitative values can only be obtained, however, from a more detailed
treatment of the phonon dispersion and the electron–phonon coupling.

In this paper we present a study of complete phonon dispersions, electron–phonon and
superconducting properties of the Nb1−x Mox alloy for eight different concentrations, x = 0.0,
0.1, 0.2, 0.3, 0.4, 0.5, 0.7, and 1.0, by combining density functional theory (DFT) [34] with
the self-consistent virtual-crystal approximation (VCA) [35–37]. Vibrational properties as
well as the electron–phonon coupling are obtained with the linear response theory [38–42].
Finally, superconductivity is discussed within the framework of the isotropic Eliashberg
theory [43, 44]. We assess the accuracy of the VCA for describing complete phonon dispersion
curves and superconducting properties of this alloy by comparison with available experimental
data [13–15, 23–25, 27–29, 32].

2. Computational details

The present DFT calculations were performed with the mixed-basis pseudopotential method
(MBPP) [45]. The Nb1−x Mox alloy was modeled in the self-consistent virtual-crystal
approximation (VCA) [35, 36, 46–48]. For each x we generated a new pseudopotential
with a fractional nuclear charge (Z = 41 + x). The valence charge is modified by the
same amount in order to maintain the neutrality on the pseudo-atom. This approximation is
possible since Mo and Nb are nearest neighbors in the periodic table. The potential for the
VCA system is determined self-consistently for each value of x once we have constructed the
pseudopotential. In a previous work [37], we verified the accuracy of the VCA implementation
in the MBPP code, and found that this version of the VCA scheme works very reliably with
respect to structural, electronic and phononic properties (for selected high-symmetry points at
the Brillouin zone) of Nb1−x Mox for the full range of concentrations (0 � x � 1).
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Details of pseudopotentials and basis functions can be found in our previous
publication [37]. Phonon properties are accessed via density functional perturbation theory
(DFPT) [38, 39] as implemented in the MBPP code [39, 41]. The calculations were carried out
with two different approximations for the exchange–correlation functional, the local density
approximation (LDA) using the Hedin–Lundqvist form [49] and the generalized gradient
approximation (GGA) using the PBE functional [50–52]. The Brillouin-zone integration has
been performed using Monkhorst–Pack special k-point sets with a Gaussian smearing of 0.2 eV
and a grid of 32 × 32 × 32. Complete spectra are obtained from a Fourier interpolation
of dynamical matrices calculated on a 8 × 8 × 8 q-point mesh. The same method also
provides access to the screened electron–phonon matrix elements, which are the ingredients
of the isotropic Eliashberg theory [43, 44]. All phonon calculations are based on full structural
optimization for each x with respect to the total energy [37]. Finally, estimates for Tc are
obtained via the Allen–Dynes formula [53].

3. Results and discussion

In figure 1 we display the phonon dispersions together with the corresponding phonon densities
of states (PDOS) for varying Mo (x = 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.7, and 1.0). Results
are shown for both xc-functionals, LDA and GGA and are compared with experimental
data [15]. As a general trend, the phonon spectra harden with increasing x , which indicates
a strengthening of the interatomic bonds from Nb to Mo. Comparing the two xc-functionals,
GGA produces softer frequencies than LDA for all concentrations. However, both perform
equally well with respect to experimental data for x = 0.0 and 0.4, with only a slight preference
for LDA in the case of x = 1. With knowledge of the complete dispersion curves, we can now
follow in more detail the evolution of the different anomalies present in Nb1−x Mox as a function
of x , namely the Kohn anomaly at the �–H direction and the crossing of the transverse branches
at the �–N direction. The latter is directly connected with the reordering of the transverse
frequencies at the N-point mentioned above. We note that the Kohn anomaly becomes less
deep as x grows and disappears for x ≈ 0.5. In contrast, on the Mo side a strong softening
occurs at the H-point. For the �–N direction the crossing of the transverse branches moves
toward the zone boundary of ζ with increasing x until for x ≈ 0.5 it reaches the N-point. For
larger x the crossing disappears, while close to Mo, the lower transverse branch develops a
depression in the vicinity of N.

We now discuss the electron–phonon coupling properties of the Nb1−xMox alloy. In
figure 2 we show our calculated electron–phonon spectral functions α2 F(ω). With increasing
x , the weight of the spectra is decreasing until x ≈ 0.7, before recovering again for Mo.
The shape of the spectra reflects the underlying PDOS, which explains the shift to higher
frequencies when x increases, as well as the fact that the LDA spectra are always harder than
the corresponding GGA ones.

Experimental information about α2 F(ω) is only available for Nb. Results from various
tunneling experiments [23–25, 29] are depicted in figure 2. While there is reasonable agreement
for the low-frequency region, theory and experiments clearly differ with respect to the intensity
of the high-frequency (longitudinal) peak. Theory predicts a significantly larger coupling of
the longitudinal phonons than seen in all experiments. This discrepancy has also been found
in previous calculations [21, 30, 43]. Early attempts to link it to difficulties related to the
tunneling technique (e.g. preparation of high-quality junctions) have been falsified by extensive
studies [23, 29]. This points to a currently unidentified shortcoming in the theoretical approach.

The spectral functions determine the electron–phonon mass enhancement parameter λ(x)

and the average effective frequency ωlog(x). They are shown in figure 3 together with the
density of states at the Fermi level N(EF). Both xc-functionals result in very similar λ(x).
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Figure 1. Calculated phonon dispersion curves and phonon density of states (PDOS) of Nb1−x Mox

for eight concentrations using both xc-functionals. Measured data [15] are shown by empty circles.

At small x , λ decreases almost linearly until x ≈ 0.4 and passes a shallow minimum in the
range 0.4 � x � 0.7 before increasing slightly toward x = 1 (Mo). A very similar behavior is
exhibited by N(EF), which indicates that the variation of λ with x is predominantly determined
by the variation of N(EF), and to a much lesser degree by the variation of the electron–phonon
coupling. The effective phonon frequency entering the Allen–Dynes formula is always higher
for LDA than for GGA, a feature that comes from the harder phonon spectrum for LDA. The
increase of ωlog(x) from Nb to Mo essentially occurs in the region 0.2 � x � 0.7, while
ωlog(x) stays almost constant otherwise.

In comparison with previous theoretical work, our value of λ = 0.41 for Mo agrees very
well with Savrasov et al (λ = 0.42) [21]. Similarly, for Nb, we obtain λ ≈ 1.33, the same value
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Figure 2. Calculated Eliashberg functions α2 F(ω) of Nb1−x Mox for both functionals, LDA and
GGA. Symbols refer to spectra extracted from tunneling experiments [23–25, 29].

Figure 3. Evolution of N(EF), λ, and ωlog as a function of x for the Nb1−x Mox alloy.

found by Bauer et al [30]. A slightly smaller value was reported by Savrasov et al (λ = 1.26).
This difference can be traced back to the use of the experimental lattice constant in the
calculation of the electron–phonon coupling in the latter work, while in the present calculation,
as well as those by Bauer et al, the theoretically optimized lattice constant was chosen. These
theoretical values for λ (Nb) are of the order of 20% larger than those deduced from tunneling
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Figure 4. Calculated Tc(x) on a logarithmic scale for Nb1−x Mox alloy using two different
interpolation schemes for μ∗(x). For comparison, experimental data from [32] are shown as open
symbols.

experiments (1.04 [23], 1.22 [27], 0.95–1.09 [29]), which is a direct consequence of the
overestimation of the high-frequency part of the Eliashberg function discussed above. We
note that, in contrast, from a de Haas–van Alphen [28] experiment a value of λ = 1.33 was
extracted, in close agreement with theory.

For obtaining estimates of Tc(x), we now apply the Allen–Dynes formula3 [53]. Besides
the quantities λ(x) and ωlog(x) discussed above, we require knowledge of μ∗, which is the
only phenomenological parameter. We have considered two different interpolation schemes.
The first one consists of a simple linear interpolation, μ∗(x) = μ∗

Nb(1 − x) + μ∗
Mox , between

the values of μ∗ for Nb and Mo. The boundary values were chosen to fit the experimental Tc

of 9.25 K for Nb and 0.92 K for Mo, giving μ∗
Nb = 0.224(0.219) and μ∗

Mo = 0.119(0.112)

for LDA(GGA), respectively. Note that our μ∗
Nb is larger than the value from inversion of the

tunneling data (μ∗ ≈ 0.15–0.19 [29]). This is a consequence of the larger theoretical value
of λ, and has been noted before by Savrasov et al [21]. The second scheme is based on the
representation μ∗(x) = Uc(x)N(EF, x) proposed by Gladstone et al [54]. Here we combine
our calculated values for N(EF, x) with a linear interpolation of Uc(x). The boundary values
Uc(Nb) = 0.158(0.144) and Uc(Mo) = 0.205(0.188) for LDA(GGA), are again chosen to
reproduce the Tcs of Nb and Mo, respectively.

In figure 4 we present the evolution of Tc as calculated with the two different interpolations
of μ∗(x) for both LDA and GGA, and compare them with experimental data [32]. With both
schemes, the experimental trend is well reproduced, that is, a reduction of Tc for smaller x , a
minimum at x ≈ 0.5–0.7, and then an increase toward Mo(x = 1). The linear interpolation
scheme performs poorly for intermediate values of x . A much improved description is obtained
for the case of scaling of μ∗(x) with N(EF, x) for both xc-functionals, LDA and GGA, with a
slightly better agreement for GGA in the region x � 0.5.

4. Conclusions

In summary, we have performed a first-principles study of complete phonon dispersions,
electron–phonon and superconducting properties of the alloy series Nb1−x Mox as a function
of x . In general we found very good agreement with experimental trends for all properties

3 To check the accuracy of the Allen–Dynes formula in the strong coupling regime, we also solved the exact gap
equation for the boundary cases of the alloy, Nb and Mo. The obtained differences in Tc of ≈3% and 5% for Nb and
Mo, respectively, are negligible for the purpose of the present study.
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investigated: (i) the hardening of the spectra with increasing x , and in particular the evolution
of the various phonon anomalies, is well reproduced. Both LDA and GGA possess similar
accuracy in describing the experimental phonon dispersions, although with LDA typically
harder spectra are obtained. (ii) Following the behavior of the phonon density of states, the
Eliashberg functions α2 F(ω) shift weight to higher frequencies with increasing x . Their total
weight and the related coupling constant λ(x) exhibit a non-monotonic behavior with a strong
reduction at smaller x , a minimum at x ≈ 0.7, and a slight increase toward x = 1 (Mo).
The variation of the average coupling strength with x is to a large degree determined by the
variation of the electronic density of states at the Fermi energy. Despite the differences in the
phonon spectra, LDA and GGA predict almost the same λ(x). (iii) The experimental Tc(x)

is well reproduced on the whole range of x , provided that the strong variation of N(EF, x) is
properly incorporated in the interpolation of μ∗(x) as proposed by Gladstone et al [54]. The
good agreement with experimental data indicates that the VCA provides an accurate approach
to lattice dynamics and electron–phonon coupling properties of the alloy Nb1−x Mox .
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México) under grant no. 43830-F and the Forschungszentrum Karlsruhe, Germany. One of the
authors, OP, gratefully acknowledges a student fellowship from CONACYT-México and the
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